Adeno-associated virus vectors: Clinical Development issues

T.R. Flotte, M.D.
University of Florida
Long-term Goals

• Identify and Manage Long-term risks of Gene Therapy with Recombinant Adeno-Associated Virus (rAAV) Vectors
 – Insertional Mutagenesis
 – Inadvertent Germline Transmission
 – Immune Responses to capsids and transgene products

• Construct Safe and Effective Vector to treat Alpha-1 Antitrypsin (AAT) Deficient Patients
Adeno-associated Virus (AAV)

- Small virus, lives in symbiotic relationship with humans
- Simple DNA structure and protein capsid
- Used for long-duration transfer of genes
- Present in numerous serotypes in humans and non-human primates
Insertional Mutagenesis: Data supporting Episomal rAAV

- **Lung** *(Afione, Engelhardt)*
- **HSC** *(Niehuis, Walsh)*
- **Muscle** *(Clark, Johnson)*
- **Liver** *(Kay, Song)*

![Insertional Mutagenesis Diagram]
Alpha 1-antitrypsin Deficiency (Genetic Emphysema)

- Mutations in AAT gene (esp. PiZ)
 - Defective secretion
 - Lack of antiprotease defense from this 52kD serpin
- Lung disease: unopposed action of NE and other white blood cell products on interstitial elastin
 - 800\(\mu\)g/ml is protective
- Liver disease: only 10% of cases, due to clumping of PiZ in liver cells
Skeletal muscle as a Platform for Delivery of secreted proteins

Long term secretion of hAAT from murine muscle transduced with C-AT

Song, et al., PNAS 1998
Song, et al., PNAS 2001
AAT made in muscle is functional

Binding to Neutrophil Elastase
Song, et al., 2005 submitted
Specific Aims

• To assess the safety of IM administration of rAAV2-CB-hAAT in adult AAT-deficient patients

• To determine the dose of rAAV2-CB-hAAT required to achieve a detectable level of normal M-variant AAT in AAT-deficient adults
cGMP Manufacturing at UF:
Production Scheme and Lot Release

![Diagram](image)

Test	**Method**	**Specification**
Sterility	Direct Inoculation	No growth
Endotoxin	LAL	< 50 EU/mL
Titer		
Infectious Titer	ICA	>1X10^11 IU/ml
Vector Genome Titer	Dot Blot	>1X10^13 vector genomes/ml
Capsid Titer	ELISA	Report Results
Infectivity Ratio	ICA/Dot Blot	Report Results

Purity

<table>
<thead>
<tr>
<th>Test</th>
<th>Method</th>
<th>Specification</th>
</tr>
</thead>
</table>
| Protein purity | PAGE and coomassie blue stain | >90% pure
| 293 Cell contaminating DNA | for protein Hybrization | < 100 ng per dose
| Benzonase residual | ELISA | Report Results
| rcAAV | Infectious Center assay | <1 in 1X10^8 IU rAAV

Snyder and Flotte, 2004
Phase I protocol

- Single site (UF)
- Open label
- Single dose
- Dose escalation between subjects
- Intramuscular administration with ultrasound guidance to avoid vascular structures
- N = 12 (4 cohorts of 3 subjects)

<table>
<thead>
<tr>
<th>Cohort #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose, vg</td>
<td>2.1x10^{12}</td>
<td>7.0x10^{12}</td>
<td>2.1x10^{13}</td>
<td>7.0x10^{13}</td>
</tr>
<tr>
<td>N</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Subject Selection

• Inclusion criteria
 – Male or female ≥ 18
 – Diag of AAT def by level (< 11µM) and genotype (Z)
 – FEV1 >30% pred
 – Willing to discontinue AAT replacement 4 weeks prior and resume 11 after injection

• Exclusion criteria
 – Recent (15d) IV antibiotics
 – LFTs > 2x ULN
 – CK > 3xULN
 – Other investigational drug
 – Pregnant or nursing
 – Fertile and not using contraception
 – Cig smoker or substance abuse
 – Immune response to AAT replacement
 – Other conditions at discretion of PI
Outcome Measures

• General Safety
 – Physical findings
 – CBC, PT, PTT
 – Serum chemistry, UA

• Injection Site Safety
 – Physical findings
 – Arm Circumference
 – CK levels

• Biologic Effect
 – Total AAT
 – M-Specific IEF/Western
 – M-Specific ELISA

• Biodistribution
 – Blood Taqman
 – Semen Taqman

• Immune Response
 – Anti-AAV capsid Ab
 – Anti-AAT Ab
 – Lymphocyte prolif (ASR) to AAV
 – Lymphocyte prolif (ASR) to AAT
Time Line: Phase I rAAV2-AAT

- **Protein Therapy**
- **Vector Injection**
- **Blood and Semen PCR**
- **Immune response profile to AAV and hAAT**
- **AAT expression studies done throughout up to 180d**
- **General safety studies done throughout up to 365d**
Subject 101 Injection site
Ultrasound localization

Injection Site
Doppler Flow During Injection
First human use of rAAV2-AAT

- 59 year old Male
- Caucasian
- Protein replacement prior to study entry

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Day -1</th>
<th>Day 0 Dosing</th>
<th>Day 3</th>
<th>Day 14</th>
</tr>
</thead>
<tbody>
<tr>
<td>hAAT uM/ IEF</td>
<td>10.1/ M1Z</td>
<td>3.67/ ZZ</td>
<td></td>
<td>3.56/ ZZ</td>
<td>3.34/ ZZ</td>
</tr>
<tr>
<td>FEV1 %</td>
<td>34.8</td>
<td>33.3</td>
<td></td>
<td>31.7</td>
<td></td>
</tr>
<tr>
<td>CK U/L</td>
<td>63</td>
<td>69</td>
<td></td>
<td></td>
<td>82</td>
</tr>
<tr>
<td>GGT</td>
<td>19</td>
<td>17</td>
<td></td>
<td>19</td>
<td>17</td>
</tr>
</tbody>
</table>
Note: all patients with high levels of M-AAT before injection coincide with those that were on Prolastin. Pt. 101 went back on Prolastin therapy at D90.
Antigen-Specific Lymphocyte Proliferation vs. AAV

Stimulation Index (SI)

Time, days

Tests:
102
103
201
202
203
204
205
301
302

Antigen-Specific Lymphocyte Proliferation vs. AAV
Antigen-specific Lymphocyte Proliferation vs. AAT

Stimulation Index (SI)

Time, days

-40 -20 0 20 40 60 80 100

0 1 2 3 4 5

102 103 201 202 203 204 205 301 302
Preliminary Findings for first 3 cohorts

- Eight (8) patients safely treated
- No serious vector-related adverse effects
- No antibodies to AAT protein
- Have antibodies to capsid proteins
- Waiting on levels of M-AAT protein
- Subjects to participate in Long-term follow-up
Future Clinical Vector Candidates: rAAV1-hAAT in muscle

- Pseudotypes: same rAAV-hAAT cassette (AAV2 ITRs, diff caps)
- Advantage of type 1 in muscle; type 8 in liver
- rAAV1-hAAT-IM
 - GLP tox data generated in mice
 - OBA/RAC application\}
Investigators

- Terence R. Flotte, M.D.
- Mark L. Brantly, M.D.
- L. Terry Spencer, M.D.
- Barry J. Byrne, M.D., Ph.D.
- Carolyn T. Spencer, M.D.
- Margaret Humphries, R.N.
- Richard O. Snyder, Ph.D.
Contributors to the AAT Project

• Flotte Lab
 – Sihong Song
 – Michael Morgan
 – Thomas Conlon
 – Pedro Cruz
 – Amy Poirier
 – Lynn Combee
 – Ashley Martino
 – Sato Klein
 – Scott Loiler
 – Qiushi Tang
 – Fu-Sheng Wei
 – Kevin Foust
• Mark Brantly
• Barry Byrne
• Nick Muzyczka
• Bryon Petersen
 – Rafael Wital
• Mark Atkinson

• GMP Production/Vector Core/Regulatory
 – Richard Snyder
 – Kye Chesnut
 – Mark Potter
 – The rest of the crew
 – Joyce Francis
 – Aleta Crawford

• Pathology Core
 – Jim Crawford
 – Martha Campbell-Thompson
 – Marda Jorgensen

• AGTC
 – Sue Washer

• Alpha One Foundation
• NHLBI